日志

健康活到100岁!

Avatar

Exiting-十年寒窗无人问 一举成名天下知

Maggie McKee
14 May 2013

It’s a result only a mathematician could love. Researchers hoping to get ‘2’ as the answer for a long-sought proof involving pairs of prime numbers are celebrating the fact that a mathematician has wrestled the value down from infinity to 70 million.


“That’s only [a factor of] 35 million away” from the target, quips Dan Goldston, an analytic number theorist at San Jose State University in California who was not involved in the work. “Every step down is a step towards the ultimate answer.”

That goal is the proof to a conjecture concerning prime numbers. Those are the whole numbers that are divisible only by one and themselves. Primes abound among smaller numbers, but they become less and less frequent as one goes towards larger numbers. In fact, the gap between each prime and the next becomes larger and larger — on average. But exceptions exist: the ‘twin primes’, which are pairs of prime numbers that differ in value by 2. Examples of known twin primes are 3 and 5, or 17 and 19, or 2,003,663,613 × 2195,000 − 1 and 2,003,663,613 × 2195,000 + 1.

The twin prime conjecture says that there is an infinite number of such twin pairs. Some attribute the conjecture to the Greek mathematician Euclid of Alexandria, which would make it one of the oldest open problems in mathematics.

The problem has eluded all attempts to find a solution so far. A major milestone was reached in 2005 when Goldston and two colleagues showed that there is an infinite number of prime pairs that differ by no more than 16 (ref. 1). But there was a catch. “They were assuming a conjecture that no one knows how to prove,” says Dorian Goldfeld, a number theorist at Columbia University in New York.

The new result, from Yitang Zhang of the University of New Hampshire in Durham, finds that there are infinitely many pairs of primes that are less than 70 million units apart without relying on unproven conjectures. Although 70 million seems like a very large number, the existence of any finite bound, no matter how large, means that that the gaps between consecutive numbers don’t keep growing forever. The jump from 2 to 70 million is nothing compared with the jump from 70 million to infinity. “If this is right, I’m absolutely astounded,” says Goldfeld.

Zhang presented his research on 13 May to an audience of a few dozen at Harvard University in Cambridge, Massachusetts, and the fact that the work seems to use standard mathematical techniques led some to question whether Zhang could really have succeeded where others failed.

But a referee report from the Annals of Mathematics, to which Zhang submitted his paper, suggests he has. “The main results are of the first rank,” states the report, a copy of which Zhang provided to Nature. “The author has succeeded to prove a landmark theorem in the distribution of prime numbers. … We are very happy to strongly recommend acceptance of the paper for publication in the Annals.”

Goldston, who was sent a copy of the paper, says that he and the other researchers who have seen it “are feeling pretty good” about it. “Nothing is obviously wrong,” he says.

For his part, Zhang, who has been working on the paper since a key insight came to him during a visit to a friend’s house last July, says he expects that the paper’s mathematical machinery will allow for the value of 70 million to be pushed downwards. “We may reduce it,” he says.

Goldston does not think the value can be reduced all the way to 2 to prove the twin prime conjecture. But he says the very fact that there is a number at all is a huge breakthrough. “I was doubtful I would ever live to see this result,” he says.

Zhang will resubmit the paper, with a few minor tweaks, this week.
《名星》記者 陳小平

2013年6月8日,受哥倫比亞大學邀請前來紐約 講學的華人數學家、新罕布什爾大學講師張益唐,在法拉盛湘水山莊與新朋老友聚會,約50餘人擠滿了二樓餐廳,慶祝這位數學家取得偉大的數學成就。慶祝會之 後,張益唐在距離湘水山莊不遠的玫瑰茶室接受了《名星》記者陳小平的專訪,一同參加談話的還有張益唐的北大好友、哲學家胡平。在採訪中,張益唐對記者談到 了他的數學研究歷程、未來研究計劃、與妻子的軼事、中國父母情況、個人愛好以及回國打算等。

我這人野心太大

名星:我對數學問題是外行,今天我們採訪不談嚴肅話題,我想到哪問到哪,我估計不少人對你數學之外的故事是很有興趣的。
張: 好呀,這樣倒輕鬆。
名星:從各種報導看,究竟你什麼時候開始孿生素數研究,好像不是很清楚。我知道你的博士論文做的是被稱作代數幾何領域最難攻破的雅克比猜想,你是怎樣又跨入了數論領域的孿生素數研究的呢?
張: 雅克比猜想這個問題我已經很長時間不做了,我發現我的興趣還是在數論,所以我又回到那兒。在數學研究中,我經常是同時在想好幾個問題。其實,我對孿生素數 的研究早就有了很好的部分結果了,可能是我這人野心太大還是怎麼樣呢,要是沒有做完,我就不想發表。現在,我手裡還留著好幾個東西呢。
名星:外面說你這麼多年沒有發表什麽東西,原來是你把東西都拽在手上?
張:是,這些東西是拽在我手上。
名星:很有意思。外界說你沒出東西,事實上,是你手上有東西,沒有往外放。
張:事實上,我手上拽了幾個東西,那怕就是部分結果拿出來,其成果也會非常好。我這人就是這種個性——追求完美。用英文說,Partial result,如果拿出來,也是很好的論文,可我就不甘心,為什麼我不能把它完全做完?完全做完之後拿出來的東西就是大東西了。
名星:你的這些自認為有把握的拽在手上的東西,是你從普渡大學做雅克比猜想的時候就做出來的呢,還是可以上溯到更早的時候,是在北大讀碩士的時候呢?例如,你1985年在《數學學報》上就發表了東西。
張: 有些想法是我從北大的時候就開始有了。我讀碩士是搞數論,丁石孫教授當時是北大數學系主任,他要我改行去學代數幾何,他說代數幾何很重要。這些故事,網上 都已經捅出來了。本來是丘成桐幫忙,當時丘成桐還在加州大學聖迭戈分校任教(1984年至1987年),約在1984年左右,丘成桐給我推薦了聖迭戈分校 解析數論學家Harold Stark,結果被丁石孫給否了。5月13日我去哈佛介紹孿生素數研究成果時,丘成桐告訴我這裡面的故事。再後來,我就跟了代數幾何方面的高手莫宗堅,他 當時想找個中國學生幫他做。
名星:這就是你去普渡的原因?
張:對,就是這樣。
名星:你的導師對你評價很高。網上說他的論文一個結論導致你的研究走了彎路,不過,他說,他的論文沒有問題,這是怎麼回事?
張:他認為他是對的,而且誰都相信他是對的,但是,他沒有證出來。他告訴我他的研究是對的,我照著他說的路子就都做出來了,但回過頭來才發現,沒有證據證明他是對的。我也不認為他是錯的,但他還沒有拿出證據證明他是對的。
91年從普渡出來以後,我又回到我的數論上來,期間斷斷續續做這個,做那個,2001年還發表了一篇論文。
名星:你指的是在《杜克數學》發表的那篇文章?
張:這些資料似乎你們都知道了。
名星:本來關於你的信息就不多,有關你的一些資料,網絡基本上都挖掘了。不過,你的朋友胡平、馮勝平、楊巍在湘水山莊講的那些你在生活上的精彩故事,外界基本無人知道。

黎曼猜想成果拿出來會轟動
名星:你說手上拽了幾個東西,都是在你這20多年隱身期間分階段完成的?到了哪一年時,你覺得你的階段研究成果已經很不錯了?
張:這裡要解釋一下,不是發表出來的報導錯了,如果有錯,是我把人家搞錯了。人家問我一共想了多少年,我說三年或四年左右。
名星:精確點說,是不是北大校友拉你去新罕布什爾大學時,你開始進入孿生素數研究領域?
張:這個時候,我還沒有完全進入孿生素數猜想,這個時候,我還在想別的,包括黎曼猜想。
這個黎曼猜想,我手上也有一些東西,如果拿出來,也會很轟動,我就是這種習慣,如果沒有完全結果,或者到最後,我覺得我不可能再做了,我也許會把它拿出來,但我現在是不想拿出來的。
這 個孿生素數問題,實際我想了不止三年,斷斷續續想了很多年,就是因為看了前面三個分別來自美國、匈牙利和土耳其數學家已有的研究結果,可能這個領域的所有 專家都在想這個問題,他們的研究已到了有很好成果這樣的階段了。在他們思考的基礎上,能不能……誰都知道,是在關鍵問題跨越那根頭髮絲。我能做出來,是我 比他們堅持的時間長。他們也想了很久,最後實在做不下去,就放棄了。我有一種直覺,你要我去論證這種直覺我沒法論證,但這種直覺告訴我,我應該可以做出 來。
在這個過程中,我嘗試了很多種辦法,可能不是一根頭髮絲的距離,而是半根、1/4或1/8根頭髮絲的距離,可就 是邁不過去。然後,這麼積累,就到了去年夏天的那個看梅花鹿的故事那個瞬間——我的好友,指揮家齊光的後院裡經常有梅花鹿來做客,那天,我是想去看看有沒 有梅花鹿,其實那次我沒看到,但在那一瞬間,我突然想出來了,其實就是這麼一回事。(《名星》第3期)